Programming, Problem Solving, and Algorithms

CPSC203, 2019 Wl

Announcements

Project 2 is released. Due 11:59p, Nov 7.
"Problem of the Day" continues!

Today:

Markov Chains Fin
State Space Search
Representation
Implementation

Depth First Search

Algorithm DFS(G,v)
Input: graph G and start vertex v
Output: labeling of the edges of G in the connected component of v as discovery edges and back edges
setLabel(v, VISITED)
For all w in G.adjacentVertices(v)
if getLabel(w) = UNVISITED setLabel((v,w),DISCOVERY) DFS(G,w)
else if getLabel((v,w)) = UNEXPLORED setLabel(e,BACK)

A new ADT: Stack

Programmatic manifestation of \qquad .

ADT: Stack
Insert -- push(data)
Remove -- pop() returns data

Depth First Search

Algorithm DFS(G,v)
Input: graph G and start vertex v
Output: labeling of the edges of G in the connected component of v as discovery edges and back edges
setLabel(v, VISITED)
For all w in G.adjacentVertices(v)
if getLabel(w) = UNVISITED setLabel((v,w),DISCOVERY) DFS(G,w)
else if getLabel((v,w)) = UNEXPLORED setLabel(e,BACK)

Recursion: An abstract Stack

Moving toward implementation:

Need to be able to check whether a candidate entry is valid.

Suppose we have a variable grid, representing the board, and we want to place a value called num, in position (x, y).

Row check:
Column check:

Moving toward implementation:

Need to be able to check whether a candidate entry is valid.

Suppose we have a variable grid, representing the board, and we want to place a value called num, in position (x, y).

Region check?
EX: to query a region in a 2d numpy matrix, just define the bounds on the region and use in. In the above example, 2 in grid $[0: 2,0: 2]$ returns True.

New problem: define the region for given point (x, y) ?

POTD \#31 Tue

https://github.students.cs.ubc.ca/cpsc203-2019w-t1/potd31

Describe any snags you run into:

1. Line \qquad :
2. Line \qquad : \qquad
3. Line \qquad
\qquad
4. Line \qquad
\qquad
5. Line \qquad
\qquad

ToDo for next class...

POTD: Continue every weekday! Submit to repo.
Reading: TLACS Ch 10 \& 12 (lists and dictionaries)
References:

https://brilliant.org/wiki/markov-chains/

https://medium.com/@eightlimbed/counting-on-pythons-defaultdictb652204780bd

