Programming, Problem Solving, and Algorithms

CPSC203, 2019 Wl

Announcements

Project 2 is released. Due 11:59p, Nov 7.
"Problem of the Day" continues!

Today:

Markov Chains Fin
State Space Search
Representation
Implementation

Building a Song

1. Randomly choose a start note and put it in a list
2. for 25 notes, in the rhythm of MHaLL
a. Generate a new note
b. Put the new note in the list

	C	D	E	G
C	0	1.0	0	0
D	0.3	0.3	0.4	0
E	0	0.45	0.45	0.1
G	0	0	0.5	0.5

The Technical Details

You have just learned about a particular type of random process called a Markov Chain.

We modelled it using a transition table, or a finite state machine, and we used it as the basis for an algorithm to generate music.

Now let's look at some code!
https://github.students.cs.ubc.ca/cpsc203-2019w-t1/LecMHALL/

Other Applications

PageRank: Google's first search algorithm

Some pages are likely to "follow" (be linked from) others.
Rank of page is based on the probability that you'll be there at any moment Natural Language Processing

Some words are more likely to follow others.
"I just ate the whole desert" probably has a misspelling.
"For dinner I \qquad " next word is probably "ate"
DNA matching
Chemical reaction simulation
Many others...

But I thought we were talking about graphs...

	C	D	E	G
C	0	1.0	0	0
D	0.3	0.3	0.4	0
E	0	0.45	0.45	0.1
G	0	0	0.5	0.5

Representing Sudoku

A representation of a system is a model of the system that is useful in analysis.

A state space is a collection of all possible configurations of a physical system.

Each configuration is described using its representation, and is called a state.

How would you represent the game of Sudoku?

State Space Graphs

Define a graph where the set of vertices is \qquad .

And the set of edges consists of pairs (u, v) where \qquad

How many neighbors does this Sudoku puzzle state have?

Searching State Space Graphs

2			
			3
	4	1	

Depth First Search

Ariadne, Theseus, and the Minotaur

Depth First Search

Algorithm DFS(G,v)
Input: graph G and start vertex v
Output: labeling of the edges of G in the connected component of v as discovery edges and back edges
setLabel(v, VISITED)
For all w in G.adjacentVertices(v)
if getLabel(w) = UNVISITED setLabel((v,w),DISCOVERY) DFS(G,w)
else if getLabel((v,w)) = UNEXPLORED setLabel(e,BACK)

A new ADT: Stack

Programmatic manifestation of \qquad .

ADT: Stack
Insert -- push(data)
Remove -- pop() returns data

Recursion: An abstract Stack

Moving toward implementation:

Need to be able to check whether a candidate entry is valid.

Suppose we have a variable grid, representing the board, and we want to place a value called num, in position (x, y) .

Row check:
Column check:
Region check:

POTD \#28 Thu

https://github.students.cs.ubc.ca/cpsc203-2019w-t1/potd28

Describe any snags you run into:

1. Line \qquad :
2. Line \qquad : \qquad
3. Line \qquad
\qquad
4. Line \qquad
\qquad
5. Line \qquad , \qquad

ToDo for next class...

POTD: Continue every weekday! Submit to repo.
Reading: TLACS Ch 10 \& 12 (lists and dictionaries)
References:

https://brilliant.org/wiki/markov-chains/

https://medium.com/@eightlimbed/counting-on-pythons-defaultdictb652204780bd

