
Programming,
Problem Solving,
and Algorithms

CPSC203, 2019 W1

Announcements
Project 1 is released. Due 11:59p, Oct 17.

“Problem of the Day” continues!

Today:
BFS application to Voronoi Art.

BFS Art analysis

Graphs Intro

Pointillism

A Sunday on La Grande Jatte, Georges Seurat

https://artsandculture.google.com/asset/a-sunday-on-la-grande-jatte/twGyqq52R-lYpA?hl=en-GB

Demo and Analysis OLD
https://github.students.cs.ubc.ca/cpsc203-2019w-t1/LecVor

How much work is done?

1) Read image: w * h

2) Choose centers: c = density * w * h

3) Build new image: c * w * h

4) Write out new image: w * h

https://github.students.cs.ubc.ca/cpsc203-2019w-t1/LecVor

Data Structure: Queue
To orchestrate the fill, we’ll use a data structure called a QUEUE.

Queue:
enqueue(k) -- places data k onto the structure, at the “end”
dequeue() -- removes and returns the “first” element from the structure

1. What info should we put on the queue?
 locations and colors
2. Remember we’re using deque as our queue (Python).

ok
3. Do deques have a way to check for empty?

boolean for existence, or len()
4. What are the “neighbors” of pixel (x,y)?

(x, y-1), (x-1, y), (x, y+1), (x+1, y)
5. What would be an invalid neighbor?

○ One which has already been colored
○ One which is off the image

Designing the solution
1) enqueue the centers to start
2) while the queue is not empty:

a) v = dequeue
b) for each valid neighbor w, of v:

i) color w
ii) enqueue w

Demo and Analysis NEW
https://github.students.cs.ubc.ca/cpsc203-2019w-t1/LecBFS

How much work is done?
1) Read image: w * h

2) Choose centers: c = density * w * h

3) Build new image:

4) Write out new image: w * h

https://github.students.cs.ubc.ca/cpsc203-2019w-t1/LecBFS

Graphs: A new model for representing images
00 10 20 30 40 50 60 70 80 90

01 11 21 31 41 51 61 71 81 91

02 12 22 32 42 52 62 72 82 92

03 13 23 33 43 53 63 73 83 93

04 14 24 34 44 54 64 74 84 94

05 15 25 35 45 55 65 75 85 95

A Graph is a collection of vertices, and
edges between them. They’re used as a
general model for many problems.

In our images every __________ is a
vertex, and every __________ is an edge.
How many edges are there in the
graph representing the image on the
left?

Our fast algorithm for Voronoi Art
mirrors a classic algorithm on graphs
called Breadth First Search.

Breadth First Search
Breadth-first search (BFS) is an algorithm for traversing or searching tree or
graph data structures. It starts at the tree root (or some arbitrary node of a
graph, sometimes referred to as a 'search key'[1]), and explores all of the
neighbor nodes at the present depth prior to moving on to the nodes at the
next depth level. (--Wikipedia)

Simplified description:

https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Tree_data_structure
https://en.wikipedia.org/wiki/Graph_(data_structure)
https://en.wikipedia.org/wiki/Tree_(data_structure)#Terminology
https://en.wikipedia.org/wiki/Breadth-first_search#cite_note-1

Introduction to Graphs:

This graph can be used to quickly calculate
whether a given number is divisible by 7.

1.Start at the circle node at the top.
2.For each digit d in the given number,

follow d blue (solid) edges in
succession. As you move from one
digit to the next, follow 1 red (dashed)
edge.

3.If you end up back at the circle node,
your number is divisible by 7.

3703

POTD #18 Tue
https://github.students.cs.ubc.ca/cpsc203-2019w-t1/potd18

Describe any snags you run into:

1. Line ___: __

2. Line ___: __

3. Line ___: __

4. Line ___: __

5. Line ___: __

https://github.students.cs.ubc.ca/cpsc203-2019w-t1/potd18

ToDo for next class...
POTD: Continue every weekday! Submit to repo.

Reading: TLACS Ch 10 & 12 (lists and dictionaries)

References:

https://en.wikipedia.org/wiki/Voronoi_diagram

https://en.wikipedia.org/wiki/Voronoi_diagram

